If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+10x+1=0
a = 7; b = 10; c = +1;
Δ = b2-4ac
Δ = 102-4·7·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{2}}{2*7}=\frac{-10-6\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{2}}{2*7}=\frac{-10+6\sqrt{2}}{14} $
| 4-5x/2=-4x+10 | | 1.2(3b-1)+2.1-1.8b=0 | | 3(x+3)+4=40 | | 5.4=-12.1+(-4.6c)+2.6c | | 72+46+2x+20=180 | | -3(x-3)=5x+10 | | a/5-29=40 | | 3/8t=1/2 | | -4(b=1)=2b=3(2b-1) | | 57x+25=64x+15 | | 1-6y=-7 | | 1/3(x-3)=5/3x-7 | | 4(2q-3)=12 | | 2x-16+4x=6x-12 | | 144y2-45=-36 | | 1.5x=2x-95 | | 1-3(x-5)=5x-12 | | 7+40x=60+20x | | 1.5x=-95 | | 71+64+8x-11=180 | | 8x+6x-19=57-5x | | 6+8+10=5x | | A1=5n | | 6x+22=10x-18 | | 14d+5=40-4d+5 | | (4x+3)+41=180 | | 12-2v=8 | | 2/5a=2 | | q/960=40/480 | | -11w+7+10w=19+w | | 12x-13=11x+9 | | 3z-4=-6 |